Grafted neural progenitors migrate and form neurons after experimental traumatic brain injury.

نویسندگان

  • U Wallenquist
  • K Brännvall
  • F Clausen
  • A Lewén
  • L Hillered
  • Karin Forsberg-Nilsson
چکیده

PURPOSE Neural stem and progenitor cells (NSPC) generate neurons and glia, a feature that makes them attractive for cell replacement therapies. However, efforts to transplant neural progenitors in animal models of brain injury typically result in high cell mortality and poor neuronal differentiation. METHODS In an attempt to improve the outcome for grafted NSPC after controlled cortical impact we transplanted Enhanced Green Fluorescent Protein (EGFP)-positive NSPC into the contra lateral ventricle of mice one week after injury. RESULTS Grafted EGFP-NSPC readily migrated to the injured hemisphere where we analyzed the proportion of progenitors and differentiated progeny at different time points. Transplantation directly into the injured parenchyma, resulted in few brains with detectable EGFP-NSPC. On the contrary, in more than 90% of the mice that received a transplant into the lateral ventricle detectable EGFP-positive cells were found. The cells were integrated into the lateral ventricle wall of the un-injured hemisphere, throughout the corpus callosum, and in the cortical perilesional area. At one-week post transplantation, grafted cells that had migrated to the perilesion area mainly expressed markers of neural progenitors and neurons, while in the corpus callosum and the ventricular lining, grafted cells with a glial fate were more abundant. After 3 months, grafted cells in the perilesion area were less abundant whereas cells that had migrated to the walls of the third- and lateral- ventricle of the injured hemisphere were still detectable, suggesting that the injury site remained a hostile environment. CONCLUSION Transplantation to the lateral ventricle, presumably for being a neurogenic region, provides a favorable environment improving the outcome for grafted NSPC both in term of their appearance at the cortical site of injury, and their acquisition of neural markers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P108: Microglia in Traumatic Brain Injury

Microglia is one of the first innate immune components. These cells account about 5 to 10% of the entire adult brain cells and are activated by trauma. Complex-mediated inflammatory responses occur through cellular and molecular events during and after the traumatic brain injury (TBI). In-lesion area astrocytes, microglia, and damaged neurons begin to secrete cytokines and chemokines. Microglia...

متن کامل

O 26: Treatment of Traumatic Brain Injury in Adult Rats with Injection of Human Epileptic Neural Stem Cells and Nano-Scaffold

Traumatic brain injury (TBI) is described by a disruption in the normal function of the brain due to an injury following a trauma, which can potentially cause severe physical, cognitive, and emotional impairment. The use of human stem cells and self-assembling peptide scaffolds suggest huge potential for application in the treatment of TBI. In the present study, we surveyed the beneficial effec...

متن کامل

Forebrain neurogenesis after focal Ischemic and traumatic brain injury.

Neural stem cells persist in the adult mammalian forebrain and are a potential source of neurons for repair after brain injury. The two main areas of persistent neurogenesis, the subventricular zone (SVZ)-olfactory bulb pathway and hippocampal dentate gyrus, are stimulated by brain insults such as stroke or trauma. Here we focus on the effects of focal cerebral ischemia on SVZ neural progenitor...

متن کامل

P 104: Effects of Human Neural Stem Cells in Cure Neuroinflammation of Traumatic Brain Injury

Traumatic brain injury (TBI) is defined as an external mechanical injury to the brain. Neuroinflammation plays a vital role in the pathophysiology of TBI. Microglia and astrocytes play a central role in the initiation and regulation of inflammation. Numerous pro-inflammatory mediators including cytokines, chemokines, reactive oxygen species (ROS) and nitric oxide (NO) released by microglia. In ...

متن کامل

Adult Hippocampal Neurogenesis and Memory

Adult neurogenesis, a concept emergent in the late 1990s, is the generation of new neurons in the adult brain. This process occurs thank to cells who have this proliferative feature, named as Neural Stem Cells (NSCs). Neural Stem Cells (NSCs) are primary progenitors who can generate the two neural types (neurons and glia). Classically it was assumed that NSCs are only present in the embryo, but...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Restorative neurology and neuroscience

دوره 27 4  شماره 

صفحات  -

تاریخ انتشار 2009